Gibbs measure for the periodic derivative nonlinear Schrödinger equation

نویسندگان

  • Laurent Thomann
  • Nikolay Tzvetkov
  • NIKOLAY TZVETKOV
چکیده

— In this paper we construct a Gibbs measure for the derivative Schrödinger equation on the circle. The construction uses some renormalisations of Gaussian series and Wiener chaos estimates, ideas which have already been used by the second author in a work on the Benjamin-Ono equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Exact Traveling Wave Solutions for the Generalized Derivative Schrödinger Equation

In the paper, a auxiliary equation expansion method and its a lgorithm is proposed by studying a second order nonlinear ordinary differential equation with a six-degree term.The method is applied to the generalized derivative Schrödinger equation .As a result,some new exact traveling wave solution are obtained which singular solutions,triangular periodic wave solution and Jacobian elliptic func...

متن کامل

On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition

It is shown that the Cauchy problem associated to the derivative nonlinear Schrödinger equation ∂tu − i∂ xu = λ∂x(|u| u) is locally well-posed for initial data u(0) ∈ H(T), if s ≥ 1 2 and λ is real. The proof is based on an adaption of the gauge transformation to periodic functions and sharp multi-linear estimates for the gauge equivalent equation in Fourier restriction norm spaces. By the use ...

متن کامل

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Conservation of resonant periodic solutions for the one-dimensional nonlinear Schrödinger equation

We consider the one-dimensional nonlinear Schrödinger equation with Dirichlet boundary conditions in the fully resonant case (absence of the mass term). We investigate conservation of small amplitude periodic solutions for a large measure set of frequencies. In particular we show that there are infinitely many periodic solutions which continue the linear ones involving an arbitrary number of re...

متن کامل

Weakly nonlinear Schrödinger equation with random initial data

There is wide interest in weakly nonlinear wave equations with random initial data. A common approach is the approximation through a kinetic transport equation, which clearly poses the issue of understanding its validity in the kinetic limit. While for the general case a proof of the kinetic limit remains open, we report here on first progress. As wave equation we consider the nonlinear Schrödi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017